Catia Giaconi, Noemi Del Bianco, Maura Mengoni, Silvia Ceccacci, Aldo Caldarelli


The increasing number of students with disabilities and Specific Learning Disorders (SpLDs) has led universities and educational policies to start a reflection on teaching, assessment, and organisational practices to achieve inclusive education. Achieving these goals requires a rethink of the overall educational and teaching proposals from an inclusive perspective, including assessment procedures. As emotions significantly contribute to student engagement and positive academic outcomes, providing inclusive assessment paths, ensuring a welcoming atmosphere, plays an important role in improving student academic success, especially for students with SpLDs or disabilities. However only few studies focused on inclusive university assessment. This study, starting from a pilot study conducted at University of Macerata, aims at understanding whether emotional feedback can support the redefinition of the assessment context in a more inclusive way.


Emotion recognition; Gaze tracking; Inclusive university teaching; students with disability and Specific Learning Disorders

Full Text:

PDF (Italiano)


Beck, J. (2005) Engagement tracing: using response times to model student disengagement, in Proc. Conf. Artif. Intell. Educ., pp. 88–95.

Ceccacci, S., Generosi, A., Giraldi, L., & Mengoni, M. (2018, June). An emotion recognition system for monitoring shopping experience. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference (pp. 102-103).

Ceccacci, S., Generosi, A., Cimini, G., Faggiano, S., Giraldi, L., & Mengoni, M. (2021). Facial coding as a mean to enable continuous monitoring of student's behavior in e-Learning, CEUR Workshop Proceedings, 2817.

D’Angelo I. and Del Bianco N. (eds.) (2019). Inclusion at the University. Studies and Practices. Milano: FrancoAngeli.

D’Errico F., Paciello M., and Cerniglia L. (2016). When emotions enhance students’ engagement in e-learning processes. Journal of e-Learning and Knowledge Society, 12(4): 9-23.

Ekman, P., Wallace V. F. (1978) Manual for the facial action coding system. Consulting Psychologists Press.

Generosi A., Ceccacci S., Mengoni, M. (2018) A deep learning-based system to track and analyze customer behavior in retail store, in 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), doi: 10.1109/ICCE-Berlin.2018.8576169.

Generosi, A., Ceccacci, S., Faggiano, S., Giraldi, L., & Mengoni, M. (2020) A Toolkit for the Automatic Analysis of Human Behavior in HCI Applications in the Wild, Advances in Science, Technology and Engineering Systems, 5 (6), pp. 185-192.

Giaconi C. (2015). Qualità della Vita e adulti con disabilità. Percorsi di ricerca e prospettive inclusive. Milano: FrancoAngeli.

Giaconi C., Capellini S. A., Del Bianco N., Taddei A. and D’Angelo I. (2019). Study Empowerment for inclusion. Education Sciences and Society-Open Access, 9(2): 166-183.

Goldberg, B., Sottilare, R., Brawner, K., Holden, H. (2011) Predicting learner engagement during well-defined and ill-defined computer-based intercultural interactions, in Proc. 4th Int. Conf. Affective Comput. Intell. Interaction, pp. 538–547. doi: 10.1007/978-3-642-24600-5_57.

Hansen, D.W., Ji, Q., (2010) In the eye of the beholder: a survey of models for eyes and gaze, IEEE Trans Pattern Anal Mach Intell 32(3):478–500.

Hussain, M., Zhu, W., Zhang, W., Abidi, S.M.R. (2018) Student Engagement Predictions in an e-Learning System and Their Impact on Student Course Assessment Scores, Computational Intelligence and Neuroscience. doi:10.1155/2018/6347186.

Isen, A. M., Daubman, K. A., and Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. J. Pers. Soc. Psychol. 52, 1122–1131. doi: 10.1037/0022-3514.52.6.1122

Johns, J., Woolf B. (2006) A dynamic mixture model to detect student motivation and proficiency, in Proc. 21st Nat. Conf. Artif. Intell., pp. 2–8.

Jung, N., Wranke, C., Hamburger, K., and Knauff, M. (2014). How emotions affect logical reasoning: evidence from experiments with mood-manipulated participants, spider phobics, and people with exam anxie-ty. Front. Psychol. 5:570. doi: 10.3389/fpsyg.2014.00570

Kaur, A., Mustafa, A., Mehta, L., Dhall, A. (2018) Prediction and Localization of Student Engagement in the Wild, 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, pp. 1-8, doi: 10.1109/DICTA.2018.8615851.

Krafka, K., Khosla, A., Kellnhofer, P., Kannan, H., Bhandarkar, S., Matusik, W., & Torralba, A. (2016) Eye tracking for everyone, in Proceedings of the IEEE conference on computer vision and pattern recognition.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012) Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems.

Le Boterf G. (2000). Costruire le competenze individuali e collettive. Napoli, Guida.

Mengoni, M., Ceccacci, S., Del Bianco, N., D'Angelo, I., Romeo, F. P., Caldarelli, A., Capellini S. A., Giaconi, C. (2021a). Emotional Feedback in evaluation processes: Case studies in the University context. Education Sciences & Society-Open Access, 12(2).

Mengoni M., Ceccacci, S., Del Bianco, N., D’Angelo, I., Capellini, S. A., Giaconi, C. (2021b). Evaluation strategies at University for students with Dyslexia: a pilot study supported by face emotion recognition. IEEE 2021 International Conference on Computational Science and Computational Intelligence (CSCI).

Nicholls, M. ER., Loveless, K. M., Thomas, N. A., Loetscher, T., Churches, O. (2015). Some participants may be better than others: Sustained attention and motivation are higher early in semester, The Quarterly Journal of Experimental Psychology 68(1), 10–18.

Pentaraki A. and Burkholder G.J. (2017). Emerging Evidence Regarding the Roles of Emotional, Behavioural, and Cognitive Aspects of Student Engagement in the Online Classroom. European Journal of Open, Distance and E-learning, 20(1): 1-21.

Perla L. (2018). Formare il docente alla didattica universitaria: il cantiere dell’innovazione. Riflessioni sull’innovazione didattica universitaria. Interventi alla tavola rotonda GEO (30 giugno 2017), 79-88.

Pino M., and Mortari L. (2014). The Inclusion of Students with Dyslexia in Higher Education: A Systematic Review Using Narrative Synthesis. DYSLEXIA, 20: 46-369.

Rivera C.J., Wood C. L, James M. and Williams S. (2019). Improving Study Outcomes for College Students With Executive Functioning Challenges. Career Development and Transition for Exceptional Individuals, 42(3), pp. 139-147.

Romeo F.P. (2020). Sollecitare la resilienza. Emergenze educative e strategie didattiche. Trento, Erickson.

Romeo F.P. (2021). Investimento affettivo nei processi di insegnamento-apprendimento. Tre criteri per la didattica a distanza nelle emergenze, Open Journal of IUL University, 2(1), 267-279.

Rossi P.G. (2011). Didattica enattiva. Complessità, teorie dell'azione, professionalità docente: Complessità, teorie dell'azione, professionalità docente. Milano, FrancoAngeli.

Rossi, P.G., Pentucci, M., Fedeli, L., Giannandrea, L. & Pennazio V. (2018). From the informative feedback to the generative feedback. Education Sciences & Society-Open Access, 9(2), pp. 83-107.

Sroufe L. A. (2000). Lo sviluppo delle emozioni. I primi anni di vita. Milano, Raffaello Cortina.

Talipu, A., Generosi, A., Mengoni, M., & Giraldi, L. (2019, June). Evaluation of deep convolutional neural network architectures for emotion recognition in the wild. In 2019 IEEE 23rd International Symposium on Consumer Technolo-gies (ISCT) (pp. 25-27). IEEE.

Tyng, C. M., Amin, H. U., Saad, M. N., & Malik, A. S. (2017). The influences of emotion on learning and memory. Frontiers in psychology, 8, 1454.

Um, E., Plass, J. L., Hayward, E. O., and Homer, B. D. (2012). Emo-tional design in multimedia learning. J. Educ. Psychol. 104, 485–498. doi: 10.1037/a0026609.

Vuilleumier, P. (2005). How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594. doi: 10.1016/j.tics.2005.10.011.

Whitehill, J., Serpell, Z., Lin, Y., Foster, A., Movellan, J. R. (2014) The Faces of Engagement: Automatic Recognition of Student Engagementfrom Facial Expressions, in IEEE Transactions on Affective Computing, vol. 5, no. 1, pp. 86-98, doi: 10.1109/TAFFC.2014.2316163.

Xiao, X., Wang, J. (2017) Understanding and Detecting Divided Attention in Mobile MOOC Learning, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2411–2415.

Zhang, X., Sugano, Y., Fritz, M., & Bulling, A. (2019) Appearance-based gaze estimation in the wild, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2019.



  • There are currently no refbacks.

Copyright (c) 2022 Giornale Italiano di Educazione alla Salute, Sport e Didattica Inclusiva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Italian Journal of Health Education, Sports and Inclusive Didactics 
ISSN: 2532-3296