MOVEMENTS IN ANALOGIC OR DIGITAL CONTEXT: A CRITICAL COMPARISON

Nicola Lovecchio, Silvia Sangalli, Antonio Borgogni

Abstract


All human activity, including the use of digital media, have an imprint on the human brain. Indeed, the interaction with virtual tools changes cortical activity in the motor or somatosensory cortex and lead to a reduction of hippocampus volume.

Even if, multi-digital environments are associated with faster mental processing of discrete stimulus the analogic experience remained the golden standard because we learn with our body in a end-less stimuli context that only the realty can supply.


Keywords


Neuroplasticity; digital media; body image; somato-representation; perception

Full Text:

PDF (Italiano)

References


Adams, H., Narasimham, G., Rieser, J., Creem-Regehr, S., Stefanucci, J., & Bodenheimer, B. (2018). Locomotive Recalibration and Prism Adaptation of Children and Teens in Immersive Virtual Environments.

IEEE Transactions on Visualization and Computer Graphics, 24(4), 1408–1417. https://doi.org/10.1109/TVCG.2018.2794072

Albarran, E., Raissi, A., Jáidar, O., Shatz, C. J., & Ding, J. B. (2021). Enhancing motor learning by increasing the stability of newly formed dendritic spines in the motor cortex. Neuron, 109(20), 3298-3311.e4. https://doi.org/10.1016/j.neuron.2021.07.030

Andreoli, V. (2019). L’uomo col cervello in tasca: Come la rivoluzione digitale sta cambiando i nostri comportamenti. Solferino, Milano.

Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., & Fimm, B. (2008). Depth perception in virtual reality: Distance estimations in peri- and extrapersonal space. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 11(1), 9–15. https://doi.org/10.1089/cpb.2007.9935

Barlett, C. P., & Harris, R. J. (2008). The Impact of Body Emphasizing Video Games on Body Image Concerns in Men and Women. Sex Roles, 59(7), 586–601. https://doi.org/10.1007/s11199-008-9457-8

Baumgartner, T., Speck, D., Wettstein, D., Masnari, O., Beeli, G., & Jäncke, L. (2008). Feeling Present in Arousing Virtual Reality Worlds: Prefrontal Brain Regions Differentially Orchestrate Presence Experience in Adults and Children. Frontiers in Human Neuroscience, 2, 8. https://doi.org/10.3389/neuro.09.008.2008

Blanke, O., & Metzinger, T. (2009). Full-body illusions and minimal phenomenal selfhood. Trends in Cognitive Sciences, 13(1), 7–13. https://doi.org/10.1016/j.tics.2008.10.003

Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). The multisensory approach to development. In Multisensory development. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199586059.003.0001

Brilliant T., D., Nouchi, R., & Kawashima, R. (2019). Does Video Gaming Have Impacts on the Brain: Evidence from a Systematic Review. Brain Sciences, 9(10), 251. https://doi.org/10.3390/brainsci9100251

Burgess, N., Becker, S., King, J. A., & O’Keefe, J. (2001). Memory for events and their spatial context: Models and experiments. Philosophical Transactions of the Royal Society of London. Series B, 356(1413), 1493–1503. https://doi.org/10.1098/rstb.2001.0948

Byl, N. N., Nagarajan, S. S., Merzenich, M. M., Roberts, T., & McKenzie, A. (2002). Correlation of clinical neuromusculoskeletal and central somatosensory performance: Variability in controls and patients with severe and mild focal hand dystonia. Neural Plasticity, 9(3), 177–203. https://doi.org/10.1155/NP.2002.177

Cano-de-la-Cuerda, R., Molero-Sánchez, A., Carratalá-Tejada, M., Alguacil-Diego, I. M., Molina-Rueda, F., Miangolarra-Page, J. C., & Torricelli, D. (2015). Theories and control models and motor learning: Clinical applications in neuro-rehabilitation. Neurologia (Barcelona, Spain), 30(1), 32–41. https://doi.org/10.1016/j.nrl.2011.12.010

Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of Neurology, 66(5), 557–560. https://doi.org/10.1001/archneurol.2009.41

Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), Article 8. https://doi.org/10.1038/nrn894

de Klerk, C. C. J. M., Filippetti, M. L., & Rigato, S. (2021). The development of body representations: An associative learning account. Proceedings. Biological Sciences, 288(1949), 20210070. https://doi.org/10.1098/rspb.2021.0070

Diamond, A., & Ling, D. S. (2019). Aerobic-Exercise and resistance-training interventions have been among the least effective ways to improve executive functions of any method tried thus far. Developmental Cognitive Neuroscience, 37, 100572. https://doi.org/10.1016/j.dcn.2018.05.001

Dietz, T. L. (1998). An Examination of Violence and Gender Role Portrayals in Video Games: Implications for Gender Socialization and Aggressive Behavior. Sex Roles, 38(5), 425–442. https://doi.org/10.1023/A:1018709905920

Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science (New York, N.Y.), 270(5234), 305–307. https://doi.org/10.1126/science.270.5234.305

Eng, C. M., Calkosz, D. M., Yang, S. Y., Williams, N. C., Thiessen, E. D., & Fisher, A. V. (2020). Doctoral Colloquium—Enhancing Brain Plasticity and Cognition Utilizing Immersive Technology and Virtual Reality Contexts for Gameplay. 2020 6th International Conference of the Immersive Learning Research Network (ILRN), 395–398.https://doi.org/10.23919/iLRN47897.2020.9155120

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622

García-Molina, A. (2012). Phineas Gage y el enigma del córtex prefrontal. Neurología, 27(6), 370–375. https://doi.org/10.1016/j.nrl.2010.07.015

Gindrat, A.-D., Chytiris, M., Balerna, M., Rouiller, E. M., & Ghosh, A. (2015). [Smartphone use shapes cortical tactile sensory processing from the fingertips]. Medecine Sciences: M/S, 31(4), 363–366. https://doi.org/10.1051/medsci/20153104006

Gomez, J., Barnett, M., & Grill-Spector, K. (2019). Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nature Human Behaviour, 3(6). https://doi.org/10.1038/s41562-019-0592-8

Gomez Paloma, F. (2013). Embodied Cognitive Science. Atti incarnati della didattica. Edizioni Nuova Cultura, Roma.

Gomez Paloma, F., Ascione, A., & Tafuri, D. (2016). Embodied Cognition: Il ruolo del corpo nella didattica. Formazione & insegnamento, 14(1 Suppl.)

Gong, D., Yao, Y., Gan, X., Peng, Y., Ma, W., & Yao, D. (2019). A Reduction in Video Gaming Time Produced a Decrease in Brain Activity. Frontiers in Human Neuroscience, 13.

https://www.frontiersin.org/articles/10.3389/fnhum.2019.00134

Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: A systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8(1), 1–32. https://doi.org/10.1007/s40692-020-00169-2

Hill, E. L., Crane, L., & Bremner, A. J. (2012). Developmental disorders and multisensory perception. In Multisensory development. Oxford University Press, Oxford.

Hoge, E., Bickham, D., & Cantor, J. (2017). Digital Media, Anxiety, and Depression in Children. Pediatrics, 140(Suppl 2), S76–S80. https://doi.org/10.1542/peds.2016-1758G

Ingold, T. (2011). The perception of the environment: Essays on livelihood, dwelling and skill. Routledge, London.

James, C., Davis, K., Charmaraman, L., Konrath, S., Slovak, P., Weinstein, E., & Yarosh, L. (2017). Digital Life and Youth Well-being, Social Connectedness, Empathy, and Narcissism. Pediatrics, 140(Suppl 2), S71–S75. https://doi.org/10.1542/peds.2016-1758F

Jones, J., II, J., Singh, G., Kolstad, E., & Ellis, S. (2008). The Effects of Virtual Reality, Augmented Reality, and Motion Parallax on Egocentric Depth Perception (p. 14). https://doi.org/10.1109/VR.2008.4480794

Kelly, J. W., Donaldson, L. S., Sjolund, L. A., & Freiberg, J. B. (2013). More than just perception–action recalibration: Walking through a virtual environment causes rescaling of perceived space. Attention, Perception, & Psychophysics, 75(7), 1473–1485. https://doi.org/10.3758/s13414-013-0503-4

King, E. M., Edwards, L. L., & Borich, M. R. (2022). Effects of short-term arm immobilization on motor skill acquisition. PLoS ONE, 17(10), e0276060. https://doi.org/10.1371/journal.pone.0276060

Korte, M. (2020). The impact of the digital revolution on human brain and behavior: Where do we stand? Dialogues in Clinical Neuroscience, 22(2), 101–111. https://doi.org/10.31887/DCNS.2020.22.2/mkorte

Lakoff, G. & Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. Basic Books, New York.

Latash, M. L. (1998). Progress in Motor Control: Bernstein’s traditions in movement studies. Human Kinetics, Champaign.

Levac, D. E., Huber, M. E., & Sternad, D. (2019). Learning and transfer of complex motor skills in virtual reality: A perspective review. Journal of NeuroEngineering and Rehabilitation, 16(1), 121. https://doi.org/10.1186/s12984-019-0587-8

Lodi, D., Seghi, G., Barbieri, M., & Lovecchio, N. (2018). Difficoltà di apprendimento: Il ruolo dell’attività motoria finalizzata. Formazione & insegnamento, 16(2).

Lovecchio, N. (2022). Sport Practice and Improvement in Executive Function. Giornale Italiano Di Educazione Alla Salute, Sport e Didattica Inclusiva, 6(1).

Magrini M. (2017). Cervello Manuale dell’utente. Guida semplificata alla macchina più complessa del mondo. Giunti Editore, Firenze.

Mangen, A., Olivier, G., & Velay, J.-L. (2019). Comparing Comprehension of a Long Text Read in Print Book and on Kindle: Where in the Text and When in the Story? Frontiers in Psychology, 10. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00038

Mangold, M. (2020). Chekhov’s Environmental Psychology: Medicine and the Early Stories. Slavic Review, 79(4), 709–730. https://doi.org/10.1017/slr.2021.8

Mayseless, O., Shapira, G., Rachad, E. Y., Fiala, A., & Schuldiner, O. (2023). Neuronal excitability as a regulator of circuit remodeling. Current Biology. https://doi.org/10.1016/j.cub.2023.01.032

Meinel K. (2000). Teoria del movimento. Abbozzo di una teoria della motricità sportiva sotto l’aspetto pedagogico. Società Stampa Sportiva, Roma.

Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., & Felleman, D. J. (1983). Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience, 10(3), 639–665. https://doi.org/10.1016/0306-4522(83)90208-7

Miehlbradt, J., Cuturi, L., Zanchi, S., Gori, M., & Micera, S. (2021). Immersive virtual reality interferes with default head-trunk coordination strategies in young children. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-96866-8

Morin, E. (1989). La conoscenza della conoscenza. Feltrinelli, Milano.

Mowery, T. M., & Garraghty, P. E. (2023). Adult neuroplasticity employs developmental mechanisms. Frontiers in Systems Neuroscience, 16, 1086680. https://doi.org/10.3389/fnsys.2022.1086680

Paes, D., Irizarry, J., Billinghurst, M., & Pujoni, D. (2023). Investigating the relationship between three-dimensional perception and presence in virtual reality-reconstructed architecture. Applied Ergonomics, 109, 103953. https://doi.org/10.1016/j.apergo.2022.103953

Paul, R. L., Merzenich, M., & Goodman, H. (1972). Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Research, 36(2), 229–249. https://doi.org/10.1016/0006-8993(72)90732-9

Profeta, V. L. S., & Turvey, M. T. (2018). Bernstein’s levels of movement construction: A contemporary perspective. Human Movement Science, 57, 111–133. https://doi.org/10.1016/j.humov.2017.11.013

Rivoltella, P. C. (2012). Apprendere al tempo dei media digitali: Comportamenti, apprendimenti e competenze delle giovani generazioni. Linguistica e Nuova Didattica, 5.

Rowlands, M. (1999). The Body in Mind: Understanding Cognitive Processes. Cambridge University Press, Cambridge.

Sanai, N., Nguyen, T., Ihrie, R. A., Mirzadeh, Z., Tsai, H.-H., Wong, M., Gupta, N., Berger, M. S., Huang, E., Garcia-Verdugo, J.-M., Rowitch, D. H., & Alvarez-Buylla, A. (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369), 382–386. https://doi.org/10.1038/nature10487

Schmidt, R. A., & Wrisberg, C. A. (1999). Motor learning and performance: A problem-based learning approach (2. ed). Human Kinetics, Champaign.

Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367–447. https://doi.org/10.1017/S0140525X00035032

Slater, M., Perez-Marcos, D., Ehrsson, H. H., & Sanchez-Vives, M. V. (2009). Inducing Illusory Ownership of a Virtual Body. Frontiers in Neuroscience, 3(2), 214–220. https://doi.org/10.3389/neuro.01.029.2009

Statsenko, Y., Habuza, T., Charykova, I., Gorkom, K. N.-V., Zaki, N., Almansoori, T. M., Baylis, G., Ljubisavljevic, M., & Belghali, M. (2021). Predicting Age From Behavioral Test Performance for Screening Early Onset of Cognitive Decline. Frontiers in Aging Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnagi.2021.661514

Suzuki, W. (2008). Associative learning signals in the brain. Progress in Brain Research, 169. https://doi.org/10.1016/S0079-6123(07)00019-2

Tajadura-Jiménez, A., Banakou, D., Bianchi-Berthouze, N., & Slater, M. (2017). Embodiment in a Child-Like Talking Virtual Body Influences Object Size Perception, Self-Identification, and Subsequent Real Speaking. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09497-3

Uncapher, M. R., Lin, L., Rosen, L. D., Kirkorian, H. L., Baron, N. S., Bailey, K., Cantor, J., Strayer, D. L., Parsons, T. D., & Wagner, A. D. (2017). Media Multitasking and Cognitive, Psychological, Neural, and Learning Differences. Pediatrics, 140(Suppl 2), S62–S66. https://doi.org/10.1542/peds.2016-1758D

Valori, I., McKenna-Plumley, P. E., Bayramova, R., Zandonella Callegher, C., Altoè, G., & Farroni, T. (2020). Proprioceptive accuracy in Immersive Virtual Reality: A developmental perspective. PLoS ONE, 15(1), e0222253. https://doi.org/10.1371/journal.pone.0222253

Vaughan-Graham, J., Patterson, K., Zabjek, K., & Cott, C. A. (2019). Important Movement Concepts: Clinical Versus Neuroscience Perspectives. Motor Control, 23(3), 273–293. https://doi.org/10.1123/mc.2017-0085

Watson, A. H. D. (2006). What can studying musicians tell us about motor control of the hand? Journal of Anatomy, 208(4), 527–542. https://doi.org/10.1111/j.1469-7580.2006.00545.x

Webster, E., Martin, C., & Staiano, A. (2019). Fundamental motor skills, screen-time, and physical activity in preschoolers. Journal of Sport and Health Science, 8(2). https://doi.org/10.1016/j.jshs.2018.11.006

Winnicott, D. W. (1990). The Maturational Processes and the Facilitating Environment: Studies in the Theory of Emotional Development. Routledge, London.

Won, A. S., Bailey, J., Bailenson, J., Tataru, C., Yoon, I. A., & Golianu, B. (2017). Immersive Virtual Reality for Pediatric Pain. Children (Basel, Switzerland), 4(7), 52. https://doi.org/10.3390/children4070052




DOI: https://doi.org/10.32043/gsd.v7i1.804

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Giornale Italiano di Educazione alla Salute, Sport e Didattica Inclusiva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Italian Journal of Health Education, Sports and Inclusive Didactics 
ISSN printed: 2532-3296