Nicola Lovecchio, Silvia Sangalli, Antonio Borgogni


All human activity, including the use of digital media, have an imprint on the human brain. Indeed, the interaction with virtual tools changes cortical activity in the motor or somatosensory cortex and lead to a reduction of hippocampus volume.

Even if, multi-digital environments are associated with faster mental processing of discrete stimulus the analogic experience remained the golden standard because we learn with our body in a end-less stimuli context that only the realty can supply.


Neuroplasticity; digital media; body image; somato-representation; perception

Full Text:

PDF (Italiano)


Adams, H., Narasimham, G., Rieser, J., Creem-Regehr, S., Stefanucci, J., & Bodenheimer, B. (2018). Locomotive Recalibration and Prism Adaptation of Children and Teens in Immersive Virtual Environments.

IEEE Transactions on Visualization and Computer Graphics, 24(4), 1408–1417.

Albarran, E., Raissi, A., Jáidar, O., Shatz, C. J., & Ding, J. B. (2021). Enhancing motor learning by increasing the stability of newly formed dendritic spines in the motor cortex. Neuron, 109(20), 3298-3311.e4.

Andreoli, V. (2019). L’uomo col cervello in tasca: Come la rivoluzione digitale sta cambiando i nostri comportamenti. Solferino, Milano.

Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., & Fimm, B. (2008). Depth perception in virtual reality: Distance estimations in peri- and extrapersonal space. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 11(1), 9–15.

Barlett, C. P., & Harris, R. J. (2008). The Impact of Body Emphasizing Video Games on Body Image Concerns in Men and Women. Sex Roles, 59(7), 586–601.

Baumgartner, T., Speck, D., Wettstein, D., Masnari, O., Beeli, G., & Jäncke, L. (2008). Feeling Present in Arousing Virtual Reality Worlds: Prefrontal Brain Regions Differentially Orchestrate Presence Experience in Adults and Children. Frontiers in Human Neuroscience, 2, 8.

Blanke, O., & Metzinger, T. (2009). Full-body illusions and minimal phenomenal selfhood. Trends in Cognitive Sciences, 13(1), 7–13.

Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). The multisensory approach to development. In Multisensory development. Oxford University Press.

Brilliant T., D., Nouchi, R., & Kawashima, R. (2019). Does Video Gaming Have Impacts on the Brain: Evidence from a Systematic Review. Brain Sciences, 9(10), 251.

Burgess, N., Becker, S., King, J. A., & O’Keefe, J. (2001). Memory for events and their spatial context: Models and experiments. Philosophical Transactions of the Royal Society of London. Series B, 356(1413), 1493–1503.

Byl, N. N., Nagarajan, S. S., Merzenich, M. M., Roberts, T., & McKenzie, A. (2002). Correlation of clinical neuromusculoskeletal and central somatosensory performance: Variability in controls and patients with severe and mild focal hand dystonia. Neural Plasticity, 9(3), 177–203.

Cano-de-la-Cuerda, R., Molero-Sánchez, A., Carratalá-Tejada, M., Alguacil-Diego, I. M., Molina-Rueda, F., Miangolarra-Page, J. C., & Torricelli, D. (2015). Theories and control models and motor learning: Clinical applications in neuro-rehabilitation. Neurologia (Barcelona, Spain), 30(1), 32–41.

Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of Neurology, 66(5), 557–560.

Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), Article 8.

de Klerk, C. C. J. M., Filippetti, M. L., & Rigato, S. (2021). The development of body representations: An associative learning account. Proceedings. Biological Sciences, 288(1949), 20210070.

Diamond, A., & Ling, D. S. (2019). Aerobic-Exercise and resistance-training interventions have been among the least effective ways to improve executive functions of any method tried thus far. Developmental Cognitive Neuroscience, 37, 100572.

Dietz, T. L. (1998). An Examination of Violence and Gender Role Portrayals in Video Games: Implications for Gender Socialization and Aggressive Behavior. Sex Roles, 38(5), 425–442.

Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science (New York, N.Y.), 270(5234), 305–307.

Eng, C. M., Calkosz, D. M., Yang, S. Y., Williams, N. C., Thiessen, E. D., & Fisher, A. V. (2020). Doctoral Colloquium—Enhancing Brain Plasticity and Cognition Utilizing Immersive Technology and Virtual Reality Contexts for Gameplay. 2020 6th International Conference of the Immersive Learning Research Network (ILRN), 395–398.

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836.

García-Molina, A. (2012). Phineas Gage y el enigma del córtex prefrontal. Neurología, 27(6), 370–375.

Gindrat, A.-D., Chytiris, M., Balerna, M., Rouiller, E. M., & Ghosh, A. (2015). [Smartphone use shapes cortical tactile sensory processing from the fingertips]. Medecine Sciences: M/S, 31(4), 363–366.

Gomez, J., Barnett, M., & Grill-Spector, K. (2019). Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nature Human Behaviour, 3(6).

Gomez Paloma, F. (2013). Embodied Cognitive Science. Atti incarnati della didattica. Edizioni Nuova Cultura, Roma.

Gomez Paloma, F., Ascione, A., & Tafuri, D. (2016). Embodied Cognition: Il ruolo del corpo nella didattica. Formazione & insegnamento, 14(1 Suppl.)

Gong, D., Yao, Y., Gan, X., Peng, Y., Ma, W., & Yao, D. (2019). A Reduction in Video Gaming Time Produced a Decrease in Brain Activity. Frontiers in Human Neuroscience, 13.

Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: A systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8(1), 1–32.

Hill, E. L., Crane, L., & Bremner, A. J. (2012). Developmental disorders and multisensory perception. In Multisensory development. Oxford University Press, Oxford.

Hoge, E., Bickham, D., & Cantor, J. (2017). Digital Media, Anxiety, and Depression in Children. Pediatrics, 140(Suppl 2), S76–S80.

Ingold, T. (2011). The perception of the environment: Essays on livelihood, dwelling and skill. Routledge, London.

James, C., Davis, K., Charmaraman, L., Konrath, S., Slovak, P., Weinstein, E., & Yarosh, L. (2017). Digital Life and Youth Well-being, Social Connectedness, Empathy, and Narcissism. Pediatrics, 140(Suppl 2), S71–S75.

Jones, J., II, J., Singh, G., Kolstad, E., & Ellis, S. (2008). The Effects of Virtual Reality, Augmented Reality, and Motion Parallax on Egocentric Depth Perception (p. 14).

Kelly, J. W., Donaldson, L. S., Sjolund, L. A., & Freiberg, J. B. (2013). More than just perception–action recalibration: Walking through a virtual environment causes rescaling of perceived space. Attention, Perception, & Psychophysics, 75(7), 1473–1485.

King, E. M., Edwards, L. L., & Borich, M. R. (2022). Effects of short-term arm immobilization on motor skill acquisition. PLoS ONE, 17(10), e0276060.

Korte, M. (2020). The impact of the digital revolution on human brain and behavior: Where do we stand? Dialogues in Clinical Neuroscience, 22(2), 101–111.

Lakoff, G. & Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. Basic Books, New York.

Latash, M. L. (1998). Progress in Motor Control: Bernstein’s traditions in movement studies. Human Kinetics, Champaign.

Levac, D. E., Huber, M. E., & Sternad, D. (2019). Learning and transfer of complex motor skills in virtual reality: A perspective review. Journal of NeuroEngineering and Rehabilitation, 16(1), 121.

Lodi, D., Seghi, G., Barbieri, M., & Lovecchio, N. (2018). Difficoltà di apprendimento: Il ruolo dell’attività motoria finalizzata. Formazione & insegnamento, 16(2).

Lovecchio, N. (2022). Sport Practice and Improvement in Executive Function. Giornale Italiano Di Educazione Alla Salute, Sport e Didattica Inclusiva, 6(1).

Magrini M. (2017). Cervello Manuale dell’utente. Guida semplificata alla macchina più complessa del mondo. Giunti Editore, Firenze.

Mangen, A., Olivier, G., & Velay, J.-L. (2019). Comparing Comprehension of a Long Text Read in Print Book and on Kindle: Where in the Text and When in the Story? Frontiers in Psychology, 10.

Mangold, M. (2020). Chekhov’s Environmental Psychology: Medicine and the Early Stories. Slavic Review, 79(4), 709–730.

Mayseless, O., Shapira, G., Rachad, E. Y., Fiala, A., & Schuldiner, O. (2023). Neuronal excitability as a regulator of circuit remodeling. Current Biology.

Meinel K. (2000). Teoria del movimento. Abbozzo di una teoria della motricità sportiva sotto l’aspetto pedagogico. Società Stampa Sportiva, Roma.

Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., & Felleman, D. J. (1983). Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience, 10(3), 639–665.

Miehlbradt, J., Cuturi, L., Zanchi, S., Gori, M., & Micera, S. (2021). Immersive virtual reality interferes with default head-trunk coordination strategies in young children. Scientific Reports, 11(1).

Morin, E. (1989). La conoscenza della conoscenza. Feltrinelli, Milano.

Mowery, T. M., & Garraghty, P. E. (2023). Adult neuroplasticity employs developmental mechanisms. Frontiers in Systems Neuroscience, 16, 1086680.

Paes, D., Irizarry, J., Billinghurst, M., & Pujoni, D. (2023). Investigating the relationship between three-dimensional perception and presence in virtual reality-reconstructed architecture. Applied Ergonomics, 109, 103953.

Paul, R. L., Merzenich, M., & Goodman, H. (1972). Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Research, 36(2), 229–249.

Profeta, V. L. S., & Turvey, M. T. (2018). Bernstein’s levels of movement construction: A contemporary perspective. Human Movement Science, 57, 111–133.

Rivoltella, P. C. (2012). Apprendere al tempo dei media digitali: Comportamenti, apprendimenti e competenze delle giovani generazioni. Linguistica e Nuova Didattica, 5.

Rowlands, M. (1999). The Body in Mind: Understanding Cognitive Processes. Cambridge University Press, Cambridge.

Sanai, N., Nguyen, T., Ihrie, R. A., Mirzadeh, Z., Tsai, H.-H., Wong, M., Gupta, N., Berger, M. S., Huang, E., Garcia-Verdugo, J.-M., Rowitch, D. H., & Alvarez-Buylla, A. (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369), 382–386.

Schmidt, R. A., & Wrisberg, C. A. (1999). Motor learning and performance: A problem-based learning approach (2. ed). Human Kinetics, Champaign.

Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367–447.

Slater, M., Perez-Marcos, D., Ehrsson, H. H., & Sanchez-Vives, M. V. (2009). Inducing Illusory Ownership of a Virtual Body. Frontiers in Neuroscience, 3(2), 214–220.

Statsenko, Y., Habuza, T., Charykova, I., Gorkom, K. N.-V., Zaki, N., Almansoori, T. M., Baylis, G., Ljubisavljevic, M., & Belghali, M. (2021). Predicting Age From Behavioral Test Performance for Screening Early Onset of Cognitive Decline. Frontiers in Aging Neuroscience, 13.

Suzuki, W. (2008). Associative learning signals in the brain. Progress in Brain Research, 169.

Tajadura-Jiménez, A., Banakou, D., Bianchi-Berthouze, N., & Slater, M. (2017). Embodiment in a Child-Like Talking Virtual Body Influences Object Size Perception, Self-Identification, and Subsequent Real Speaking. Scientific Reports, 7(1).

Uncapher, M. R., Lin, L., Rosen, L. D., Kirkorian, H. L., Baron, N. S., Bailey, K., Cantor, J., Strayer, D. L., Parsons, T. D., & Wagner, A. D. (2017). Media Multitasking and Cognitive, Psychological, Neural, and Learning Differences. Pediatrics, 140(Suppl 2), S62–S66.

Valori, I., McKenna-Plumley, P. E., Bayramova, R., Zandonella Callegher, C., Altoè, G., & Farroni, T. (2020). Proprioceptive accuracy in Immersive Virtual Reality: A developmental perspective. PLoS ONE, 15(1), e0222253.

Vaughan-Graham, J., Patterson, K., Zabjek, K., & Cott, C. A. (2019). Important Movement Concepts: Clinical Versus Neuroscience Perspectives. Motor Control, 23(3), 273–293.

Watson, A. H. D. (2006). What can studying musicians tell us about motor control of the hand? Journal of Anatomy, 208(4), 527–542.

Webster, E., Martin, C., & Staiano, A. (2019). Fundamental motor skills, screen-time, and physical activity in preschoolers. Journal of Sport and Health Science, 8(2).

Winnicott, D. W. (1990). The Maturational Processes and the Facilitating Environment: Studies in the Theory of Emotional Development. Routledge, London.

Won, A. S., Bailey, J., Bailenson, J., Tataru, C., Yoon, I. A., & Golianu, B. (2017). Immersive Virtual Reality for Pediatric Pain. Children (Basel, Switzerland), 4(7), 52.



  • There are currently no refbacks.

Copyright (c) 2023 Giornale Italiano di Educazione alla Salute, Sport e Didattica Inclusiva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Italian Journal of Health Education, Sports and Inclusive Didactics 
ISSN: 2532-3296