THE NEUROSCIENCE BEHIND HAPTIC EXPOSURE AND POSITIVE EMOTIONS IN MIXED REALITY ENVIRONMENTS

Leila Ali, Carolina Mele, Alba Caiazzo, Raffaele Di Fuccio

Abstract


The study aims to identify the neuroscience behind haptics and positive emotions, and the impact of virtual environments’ designs and implementation on shaping them. The neural circuitries of haptics and positive emotions overlap. MR design, the degree of multisensory immersion and the haptic stimulation pattern influence the outcome. Future digital education research in virtual environments should rely on neuroscience findings to design more immersive and emotionally stimulating approaches.

 

Lo studio si propone di identificare la sovrapposizione tra i circuiti neurali dell’aptica e le emozioni positive, e l’impatto dell’implementazione di ambienti virtuali sulla loro modellazione. La progettazione della RM, il grado di immersione multisensoriale e il modello di stimolazione aptica influenzano il risultato. La futura ricerca sull’educazione in ambienti virtuali dovrebbe basarsi sui risultati delle neuroscienze per progettare approcci più coinvolgenti ed emotivamente stimolanti.


Keywords


Haptics, happiness, surprise, virtual environments, medical education Aptica, felicità, sorpresa, ambienti virtuali, educazione medica

Full Text:

PDF

References


Adams, A. T., Murnane, E. L., Adams, P., Elfenbein, M., Chang, P. F., Sannon, S., Gay, G., & Choudhury, T. (2018). Keppi: A Tangible User Interface for Self-Reporting Pain. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3173574.3174076

Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental Cognitive Neuroscience, 15, 11–25. https://doi.org/10.1016/j.dcn.2015.07.006

Alibali, M. W., & Nathan, M. J. (2012). Embodiment in Mathematics Teaching and Learning: Evidence From Learners’ and Teachers’ Gestures. Journal of the Learning Sciences, 21(2), 247–286. https://doi.org/10.1080/10508406.2011.611446

Amores, J., Dotan, M., & Maes, P. (2022). Development and Study of Ezzence: A Modular Scent Wearable to Improve Wellbeing in Home Sleep Environments. Frontiers in Psychology, 13, 791768. https://doi.org/10.3389/fpsyg.2022.791768

Barfield, W., & Furness, T. A. (Eds.). (1995). Virtual environments and advanced interface design. Oxford University Press.

Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology, 59(1), 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639

Barteit, S., Lanfermann, L., Bärnighausen, T., Neuhann, F., & Beiersmann, C. (2021). Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games, 9(3), e29080. https://doi.org/10.2196/29080

Berridge, K. C., & Kringelbach, M. L. (2011). Building a neuroscience of pleasure and well-being. Psychology of Well-Being: Theory, Research and Practice, 1(1), 3. https://doi.org/10.1186/2211-1522-1-3

Botella, C., Riva, G., Gaggioli, A., Wiederhold, B. K., Alcaniz, M., & Baños, R. M. (2012). The Present and Future of Positive Technologies. Cyberpsychology, Behavior, and Social Networking, 15(2), 78–84. https://doi.org/10.1089/cyber.2011.0140

Burdea, G., & Burdea, G. C. (1996). Force and touch feedback for virtual reality. Wiley.

Burin, D., Salatino, A., & Ziat, M. (2022). Editorial: Virtual, mixed, and augmented reality in cognitive neuroscience and neuropsychology. Frontiers in Psychology, 13, 1010852. https://doi.org/10.3389/fpsyg.2022.1010852

Burke, K. A. (2007). Conditioned reinforcement can be mediated by either outcome-specific or general affective representations. Frontiers in Integrative Neuroscience, 1. https://doi.org/10.3389/neuro.07.002.2007

Celeghin, A., Diano, M., Bagnis, A., Viola, M., & Tamietto, M. (2017). Basic Emotions in Human Neuroscience: Neuroimaging and Beyond. Frontiers in Psychology, 8, 1432. https://doi.org/10.3389/fpsyg.2017.01432

Chin, K., Thompson, M., & Ziat, M. (2021). The Effect of Multimodal Virtual Reality Experience on the Emotional Responses Related to Injections: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 128–134. https://doi.org/10.5220/0010195601280134

Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9, 2086. https://doi.org/10.3389/fpsyg.2018.02086

Coduri, M., Calandrino, A., Addiego Mobilio, G., Casadio, M., & Ricci, S. (2023). RiNeo MR: A mixed reality simulator for newborn life support training. PLOS ONE, 18(12), e0294914. https://doi.org/10.1371/journal.pone.0294914

Coppini, S., Lucifora, C., Vicario, C. M., & Gangemi, A. (2023). Experiments on real-life emotions challenge Ekman’s model. Scientific Reports, 13(1), 9511. https://doi.org/10.1038/s41598-023-36201-5

Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14(2), 143–152. https://doi.org/10.1038/nrn3403

Deci, E. L., & Ryan, R. M. (1987). The support of autonomy and the control of behavior. Journal of Personality and Social Psychology, 53(6), 1024–1037. https://doi.org/10.1037/0022-3514.53.6.1024

Deci, E. L., Spiegel, N. H., Ryan, R. M., Koestner, R., & Kauffman, M. (1982). Effects of performance standards on teaching styles: Behavior of controlling teachers. Journal of Educational Psychology, 74(6), 852–859. https://doi.org/10.1037/0022-0663.74.6.852

Dede, C. (1995). The Evolution of Constructivist Learning Environments: Immersion in Distributed, Virtual Worlds. Educational Technology, 35(5), 46–52. https://www.jstor.org/stable/44428298

Deo, D. R., Rezaii, P., Hochberg, L. R., Okamura, A. M., Shenoy, K. V., & Henderson, J. M. (2021). Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and Associated Sensory Responses in Motor Cortex. IEEE Transactions on Haptics, 14(4), 762–775. https://doi.org/10.1109/TOH.2021.3072615

Desnoyers-Stewart, J., Bergamo Meneghini, M., Stepanova, E. R., & Riecke, B. E. (2024). Real human touch: Performer-facilitated touch enhances presence and embodiment in immersive performance. Frontiers in Virtual Reality, 4, 1336581. https://doi.org/10.3389/frvir.2023.1336581

Dickey, M. D. (2003). Teaching in 3D: Pedagogical Affordances and Constraints of 3D Virtual Worlds for Synchronous Distance Learning. Distance Education, 24(1), 105–121. https://doi.org/10.1080/01587910303047

Dongye, X., Weng, D., Jiang, H., & Feng, L. (2023). A Modular Haptic Agent System with Encountered-Type Active Interaction. Electronics, 12(9), 2069. https://doi.org/10.3390/electronics12092069

Dufresne, F., Nilsson, T., Gorisse, G., Guerra, E., Zenner, A., Christmann, O., Bensch, L., Callus, N., & Cowley, A. (2024). Touching the Moon: Leveraging Passive Haptics, Embodiment and Presence for Operational Assessments in Virtual Reality. https://doi.org/10.1145/3613904.3642292

Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., Dennehy, D., Metri, B., Buhalis, D., Cheung, C. M. K., Conboy, K., Doyle, R., Dubey, R., Dutot, V., Felix, R., Goyal, D. P., Gustafsson, A., Hinsch, C., Jebabli, I., … Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 66, 102542. https://doi.org/10.1016/j.ijinfomgt.2022.102542

Elor, A., Song, A., & Kurniawan, S. (2021). Understanding Emotional Expression with Haptic Feedback Vest Patterns and Immersive Virtual Reality. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 183–188. https://doi.org/10.1109/VRW52623.2021.00041

Evangelidis, K., Papadopoulos, T., & Sylaiou, S. (2021). Mixed Reality: A Reconsideration Based on Mixed Objects and Geospatial Modalities. Applied Sciences, 11(5), 2417. https://doi.org/10.3390/app11052417

Fiore, A., Mainetti, L., & Vergallo, R. (2014). An Innovative Educational Format Based on a Mixed Reality Environment: A Case Study and Benefit Evaluation. In G. Vincenti, A. Bucciero, & C. Vaz De Carvalho (Eds.), E-Learning, E-Education, and Online Training (Vol. 138, pp. 93–100). Springer International Publishing. https://doi.org/10.1007/978-3-319-13293-8_12

Glenberg, A. M. (2008). Embodiment for Education. In Handbook of Cognitive Science (pp. 355–372). Elsevier. https://doi.org/10.1016/B978-0-08-046616-3.00018-9

Gonzalez-Franco, M., Ofek, E., Holz, C., Steed, A., Lanier, J., Buxton, B., Hinckley, K., & Sinclair, M. (2022). Taxonomy of Hand-Object Haptics for Virtual Reality. https://doi.org/10.36227/techrxiv.20182229.v1

Gu, S., Wang, F., Cao, C., Wu, E., Tang, Y.-Y., & Huang, J. H. (2019). An Integrative Way for Studying Neural Basis of Basic Emotions With fMRI. Frontiers in Neuroscience, 13, 628. https://doi.org/10.3389/fnins.2019.00628

Guerrero, G., Ayala, A., Mateu, J., Casades, L., & Alamán, X. (2016). Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study. Sensors, 16(11), 1775. https://doi.org/10.3390/s16111775

Guha, P., Lawson, J., Minty, I., Kinross, J., & Martin, G. (2023). Can mixed reality technologies teach surgical skills better than traditional methods? A prospective randomised feasibility study. BMC Medical Education, 23(1), 144. https://doi.org/10.1186/s12909-023-04122-6

Harjana, M. N. S., Saputra, H. Y., & Tho, C. (2023). A Review of the Potential Use of Mixed Reality Learning Methods in Comparison to Traditional Learning Methods. Procedia Computer Science, 227, 734–742. https://doi.org/10.1016/j.procs.2023.10.578

Hatwell, Y., Streri, A., & Gentaz, E. (2003). Touching for Knowing: Cognitive Psychology of Haptic Manual Perception. John Benjamins Publishing.

Hoyt, L. T., Craske, M. G., Mineka, S., & Adam, E. K. (2015). Positive and Negative Affect and Arousal: Cross-Sectional and Longitudinal Associations With Adolescent Cortisol Diurnal Rhythms. Psychosomatic Medicine, 77(4), 392–401. https://doi.org/10.1097/PSY.0000000000000178

Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 234–241. https://doi.org/10.1145/258549.258715

Karafotias, G., Korres, G., Teranishi, A., Park, W., & Eid, M. (2018). Mid-Air Tactile Stimulation for Pain Distraction. IEEE Transactions on Haptics, 11(2), 185–191. https://doi.org/10.1109/TOH.2017.2781693

Kelliher, A., Birchfield, D., Campana, E., Hatton, S., Johnson-Glenberg, M., Martinez, C., Olson, L., Savvides, P., Tolentino, L., Phillips, K., & Uysal, S. (2009). SMALLab: A mixed-reality environment for embodied and mediated learning. Proceedings of the 17th ACM International Conference on Multimedia, 1029–1032. https://doi.org/10.1145/1631272.1631504

Keltner, D., & Cowen, A. (2021). A taxonomy of positive emotions. Current Opinion in Behavioral Sciences, 39, 216–221. https://doi.org/10.1016/j.cobeha.2021.04.013

Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical Experience Enhances Science Learning. Psychological Science, 26(6), 737–749. https://doi.org/10.1177/0956797615569355

Le Jin & Zhigang Wen. (2001). Adorning VRML worlds with environmental aspects. IEEE Computer Graphics and Applications, 21(1), 6–9. https://doi.org/10.1109/38.920621

Lee, H.-D., Huh, Y., Kim, S., Baek, J.-W., Lee, H., Park, S.-M., & Kim, J.-K. (2024). Educational effects of and satisfaction with mixed-reality-based major trauma care simulator: A preliminary evaluation. Medicine, 103(1), e36816. https://doi.org/10.1097/MD.0000000000036816

Li, M., Chen, J., He, B., He, G., Zhao, C.-G., Yuan, H., Xie, J., Xu, G., & Li, J. (2023). Stimulation enhancement effect of the combination of exoskeleton-assisted hand rehabilitation and fingertip haptic stimulation. Frontiers in Neuroscience, 17, 1149265. https://doi.org/10.3389/fnins.2023.1149265

Long, J. W., Masters, B., Sajjadi, P., Simons, C., & Masterson, T. D. (2023). The development of an immersive mixed-reality application to improve the ecological validity of eating and sensory behavior research. Frontiers in Nutrition, 10, 1170311. https://doi.org/10.3389/fnut.2023.1170311

Luo, Y., Qi, S., Chen, X., You, X., Huang, X., & Yang, Z. (2017). Pleasure attainment or self-realization: The balance between two forms of well-beings are encoded in default mode network. Social Cognitive and Affective Neuroscience, 12(10), 1678–1686. https://doi.org/10.1093/scan/nsx078

Marougkas, A., Troussas, C., Krouska, A., & Sgouropoulou, C. (2023). Virtual Reality in Education: A Review of Learning Theories, Approaches and Methodologies for the Last Decade. Electronics, 12(13), 2832. https://doi.org/10.3390/electronics12132832

Mateu, J., Lasala, M., & Alamán, X. (2015). Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit. Sensors, 15(9), 21760–21784. https://doi.org/10.3390/s150921760

McAnally, K., & Wallis, G. (2022). Visual-haptic integration, action and embodiment in virtual reality. Psychological Research, 86(6), 1847–1857. https://doi.org/10.1007/s00426-021-01613-3

Michalski, C., Cowan, M., Bohinsky, J., Dickerson, R., & Plochocki, J. H. (2023). Evaluation of cognitive load for a mixed reality anatomy application. Translational Research in Anatomy, 31, 100247. https://doi.org/10.1016/j.tria.2023.100247

Modirshanechi, A., Becker, S., Brea, J., & Gerstner, W. (2023). Surprise and novelty in the brain. Current Opinion in Neurobiology, 82, 102758. https://doi.org/10.1016/j.conb.2023.102758

Montessori, M. (2020). The secret of childhood. Ballantine Books.

Morita, S., Suzuki, K., Yamamoto, T., Kunihara, M., Hashimoto, H., Ito, K., Fujii, S., Ohya, J., Masamune, K., & Sakai, S. (2022). Mixed Reality Needle Guidance Application on Smartglasses Without Pre-procedural CT Image Import with Manually Matching Coordinate Systems. Cardiovascular and Interventional Radiology, 45(3), 349–356. https://doi.org/10.1007/s00270-021-03029-3

Müller, D. & Nationale Agentur Bildung für Europa (Eds.). (2005). MARVEL - mechatronics training in real and virtual environments: Concepts, practices, and recommendations ; MARVEL, a Leonardo da Vinci Pilot Project, Project no. PP-112 615. BIBB.

Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(3), 207–233. https://doi.org/10.3758/CABN.3.3.207

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd edition). Basic Books.

Park, B. J., Hunt, S. J., Martin, C., Nadolski, G. J., Wood, B. J., & Gade, T. P. (2020). Augmented and Mixed Reality: Technologies for Enhancing the Future of IR. Journal of Vascular and Interventional Radiology, 31(7), 1074–1082. https://doi.org/10.1016/j.jvir.2019.09.020

Pavic, K., Chaby, L., Gricourt, T., & Vergilino-Perez, D. (2023). Feeling Virtually Present Makes Me Happier: The Influence of Immersion, Sense of Presence, and Video Contents on Positive Emotion Induction. Cyberpsychology, Behavior, and Social Networking, 26(4), 238–245. https://doi.org/10.1089/cyber.2022.0245

Pavic, K., Vergilino-Perez, D., Gricourt, T., & Chaby, L. (2022). Because I’m Happy—An Overview on Fostering Positive Emotions Through Virtual Reality. Frontiers in Virtual Reality, 3, 788820. https://doi.org/10.3389/frvir.2022.788820

Pilacinski, A., Metzler, M., & Klaes, C. (2023). Phantom touch illusion, an unexpected phenomenological effect of tactile gating in the absence of tactile stimulation. Scientific Reports, 13(1), 15453. https://doi.org/10.1038/s41598-023-42683-0

Pizzolante, M., Bartolotta, S., Sarcinella, E. D., Chirico, A., & Gaggioli, A. (2024). Virtual vs. real: Exploring perceptual, cognitive and affective dimensions in design product experiences. BMC Psychology, 12(1), 10. https://doi.org/10.1186/s40359-023-01497-5

Reigeluth, C. M. (2012). Instructional-design Theories and Models: A New Paradigm of Instructional Theory, Volume II. Taylor and Francis.

Ren, G., Wei, S., O’Neill, E., & Chen, F. (2018). Towards the Design of Effective Haptic and Audio Displays for Augmented Reality and Mixed Reality Applications. Advances in Multimedia, 2018, 1–11. https://doi.org/10.1155/2018/4517150

Richard, G., Pietrzak, T., Argelaguet, F., Lécuyer, A., & Casiez, G. (2021). Studying the Role of Haptic Feedback on Virtual Embodiment in a Drawing Task. Frontiers in Virtual Reality, 1, 573167. https://doi.org/10.3389/frvir.2020.573167

Richards, S. (2023). Student Engagement Using HoloLens Mixed-Reality Technology in Human Anatomy Laboratories for Osteopathic Medical Students: An Instructional Model. Medical Science Educator, 33(1), 223–231. https://doi.org/10.1007/s40670-023-01728-9

Riva, G., Baños, R. M., Botella, C., Wiederhold, B. K., & Gaggioli, A. (2012). Positive Technology: Using Interactive Technologies to Promote Positive Functioning. Cyberpsychology, Behavior, and Social Networking, 15(2), 69–77. https://doi.org/10.1089/cyber.2011.0139

Rodríguez, J.-L., Velázquez, R., Del-Valle-Soto, C., Gutiérrez, S., Varona, J., & Enríquez-Zarate, J. (2019). Active and Passive Haptic Perception of Shape: Passive Haptics Can Support Navigation. Electronics, 8(3), Article 3. https://doi.org/10.3390/electronics8030355

Rokhsaritalemi, S., Sadeghi-Niaraki, A., & Choi, S.-M. (2020). A Review on Mixed Reality: Current Trends, Challenges and Prospects. Applied Sciences, 10(2), 636. https://doi.org/10.3390/app10020636

Salgado, D. P., Flynn, R., Naves, E. L. M., & Murray, N. (2022). A questionnaire-based and physiology-inspired quality of experience evaluation of an immersive multisensory wheelchair simulator. Proceedings of the 13th ACM Multimedia Systems Conference, 1–11. https://doi.org/10.1145/3524273.3528175

Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695–729. https://doi.org/10.1177/0539018405058216

Schmitt, M. S., Wright, J. D., Triolo, R. J., Charkhkar, H., & Graczyk, E. L. (2023). The experience of sensorimotor integration of a lower limb sensory neuroprosthesis: A qualitative case study. Frontiers in Human Neuroscience, 16, 1074033. https://doi.org/10.3389/fnhum.2022.1074033

Semeraro, A., Vilella, S., & Ruffo, G. (2021). PyPlutchik: Visualising and comparing emotion-annotated corpora. PLOS ONE, 16(9), e0256503. https://doi.org/10.1371/journal.pone.0256503

Shaer, O. (2009). Tangible User Interfaces: Past, Present, and Future Directions. Foundations and Trends® in Human–Computer Interaction, 3(1–2), 1–137. https://doi.org/10.1561/1100000026

Silvero Isidre, A., Friederichs, H., Müther, M., Gallus, M., Stummer, W., & Holling, M. (2023). Mixed Reality as a Teaching Tool for Medical Students in Neurosurgery. Medicina, 59(10), 1720. https://doi.org/10.3390/medicina59101720

Slater, M., Spanlang, B., & Corominas, D. (2010). Simulating virtual environments within virtual environments as the basis for a psychophysics of presence. ACM Transactions on Graphics, 29(4), 1–9. https://doi.org/10.1145/1778765.1778829

Srinivasan, M. A., & Basdogan, C. (1997). Haptics in virtual environments: Taxonomy, research status, and challenges. Computers & Graphics, 21(4), 393–404. https://doi.org/10.1016/S0097-8493(97)00030-7

Stendal, K., & Bernabe, R. D. L. C. (2024). Extended Reality—New Opportunity for People With Disability? Practical and Ethical Considerations. Journal of Medical Internet Research, 26, e41670. https://doi.org/10.2196/41670

Teng, S.-Y., Li, P., Nith, R., Fonseca, J., & Lopes, P. (2021). Demonstrating Touch&Fold: A Foldable Haptic Actuator for Rendering Touch in Mixed Reality. Special Interest Group on Computer Graphics and Interactive Techniques Conference Emerging Technologies, 1–4. https://doi.org/10.1145/3450550.3465340

Truong, T. E., Luttmer, N. G., Eshete, E. R., Zaki, A. B. M., Greer, D. D., Hirschi, T. J., Stewart, B. R., Gregory, C. A., & Minor, M. A. (2022). Evaluating the Effect of Multi-Sensory Stimulation on Startle Response Using the Virtual Reality Locomotion Interface MS.TPAWT. Virtual Worlds, 1(1), 62–81. https://doi.org/10.3390/virtualworlds1010005

Tsalamlal, Y., Amorim, M.-A., Martin, J.-C., & Ammi, M. (2018). Modeling Emotional Valence Integration From Voice and Touch. Frontiers in Psychology, 9, 1966. https://doi.org/10.3389/fpsyg.2018.01966

Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Frontiers in Psychology, 10, 158. https://doi.org/10.3389/fpsyg.2019.00158

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. https://doi.org/10.3758/BF03196322

Yang, H., Cai, M., Diao, Y., Liu, R., Liu, L., & Xiang, Q. (2023). How does interactive virtual reality enhance learning outcomes via emotional experiences? A structural equation modeling approach. Frontiers in Psychology, 13, 1081372. https://doi.org/10.3389/fpsyg.2022.1081372

Yavas, E., Gonzalez, S., & Fanselow, M. S. (2019). Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory. F1000Research, 8, 1292. https://doi.org/10.12688/f1000research.19317.1

Yip, S. H., & Saunders, J. A. (2023). Restricting the distribution of visual attention reduces cybersickness. Cognitive Research: Principles and Implications, 8(1), 18. https://doi.org/10.1186/s41235-023-00466-1




DOI: https://doi.org/10.32043/gsd.v8i3.1088

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 ITALIAN JOURNAL OF HEALTH EDUCATION, SPORT AND INCLUSIVE DIDACTICS

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Italian Journal of Health Education, Sports and Inclusive Didactics 
ISSN printed: 2532-3296